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A boundary-integral method is presented for drop deformation between two parallel walls
for non-unit viscosity ratio systems. To account for the effect of the walls the Green’s func-
tions are modified and all terms for the double-layer potential are derived. The full three-
dimensional implementation is validated, and the model is shown to be accurate and con-
sistent. The method is applied to study drop deformation in shear flow. An excellent match
with small-deformation theory is found at low capillary numbers, and our results match
with other BIM simulations for pressure-driven flows. For shear flow with moderate cap-
illary numbers, we see that the behavior of a low-viscosity drop is similar to that of drop
with a viscosity ratio of unity. High-viscosity drops, on the other hand, are prevented from
rotating in shear flow, which results in a larger deformation, but less overshoot in the drop
axes is observed. In contrast with unconfined flow, high-viscosity drops can be broken in
shear flow between parallel plates; for low-viscosity drops the critical capillary number
is higher in confined situations.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Wall interactions can play a major role in the behavior of multiphase systems in microfluidic devices [1–3]. Examples of
related problems are the flow through porous media [4], and the behavior of red blood cells in arteries [5,6]. One particular
situation that has received considerable attention recently, is the flow of blends or single drops between parallel walls.
Blends in shear flow between two parallel plates have been studied by Migler and co-workers [7–9]. The behavior of indi-
vidual drops in confined geometries was investigated as well [10]. In these experiments, the drop always had the same vis-
cosity as the matrix fluid. Experimental studies which includes the effect of the viscosity ratio in particular have been done
on the structure development in a blend [11], the steady-state and transient data [12], and the break-up behavior [13]. Some
interesting effects in this latter study were found: break-up is enhanced for high-viscosity drops, while it is suppressed for
low-viscosity drops. For viscosity ratios close to unity, the effect of the confinement on the critical capillary number is minor.

Several numerical methods have been used in the past to study the behavior of multiphase systems in the presence of
solid boundaries. Examples include volume-of-fluid [14,15], Lattice Boltzmann [16], finite difference [17], finite element
[18], and boundary-integral methods with various ways of handling the solids [19–26]. An advantage of the volume-of-fluid
type of models is that they are able to include inertia and non-linear viscoelastic behavior [15]; a clear disadvantage is that a
full three-dimensional problem needs to be solved, limiting the number of nodes needed to accurately describe a deforming
interface. Boundary-integral methods for bulk flows have the advantage that only the drop surface needs to be meshed,
which allows for a highly accurate description of the drop. Depending on how the solid is incorporated in the method, it also
. All rights reserved.
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needs to be meshed. Nevertheless, the advantage remains that only the shape of the solids needs to be taken into account,
and not the whole domain. Another advantage of the boundary-integral model over the volume-of-fluid approach is that thin
regions between the drop and the walls are better resolved. Recent advancements for boundary-integral methods include
efficient remesh algorithms to handle deforming drops [27,28], multipole acceleration techniques to simulate a vast number
of drops [29–31], and implicit time integration schemes [32], all which add to the attractiveness of this method.

In this paper, we build on a previous developed boundary-integral method [33] for drops between two parallel plates
which is limited to the unit viscosity case. In that work, the Green’s functions used in the boundary-integral formulation
were modified to obey the no-slip condition at the wall [34,35]. To take into account a non-unit viscosity ratio, the Green’s
functions associated with the pressure and stress field also need to be modified. The derivation as well as the numerical eval-
uation of these terms is outlined in this paper. We then apply the method to study drop deformation in Poiseuille and shear
flow, with varying capillary numbers and confinement and viscosity ratios.

2. Mathematical formulation

We consider a drop with radius R in creeping flow conditions between parallel walls, with the walls located at z ¼ �W , as
schematically shown in Fig. 1, where the drop viscosity is given by l1, the matrix viscosity by l0, and the viscosity ratio k by
l1=l0. All length scales are scaled with R, time with _c, velocities with R _c and pressures with r=R, with _c the shear rate and r
the interfacial tension. Due to this scaling, the two other parameters that characterize the flow problem, besides k, are the
confinement ratio R=W , and the capillary number Ca ¼ R _cl0=r.

The discontinuity in the normal stress across the interface is given by f, which reads in non-dimensional form:
Fig. 1.
distanc
fðxÞ ¼ 2
Ca

jðxÞnðxÞ; ð1Þ
with n the vector normal to the interface, and j the local curvature. Note that f only includes the capillary pressure, but the
model is easily extended to include van der Waals forces or gradients in interfacial tension [36].

A boundary-integral method [37,38] is used, where the velocity u at the pole x0 ¼ ðx0; y0; z0ÞT is given by
ðkþ 1Þuðx0Þ ¼ 2u1ðx0Þ �
1

4p

Z
S

fðxÞ � Gðx; x0ÞdSðxÞ � k� 1
4p

Z
S

uðxÞ � Tðx; x0Þ � nðxÞdSðxÞ: ð2Þ
The requirement that the velocity components should vanish at the wall, is obeyed by modifying the Green’s functions G and
T to include the free-space result and a part with the additional contributions due to the presence of the walls:
G ¼ G1 þ G2W ; T ¼ T1 þ T2W ; ð3Þ
where the free-space parts are given by
G1ðx; x0Þ ¼
I
jx̂j þ

x̂x̂

jx̂j3
; T1ðx; x0Þ ¼ �6

x̂x̂x̂

jx̂j5
; ð4Þ
with x̂ ¼ x� x0, and x ¼ ðx; y; zÞT the field point.
The wall contribution of the single-layer potential has been derived by Liron and Mochon [34] and by Jones [35]; in this

work we used the latter formulation, since it yields a more symmetric form:
G2W
xx ¼ �

1
2

Z 1

0
J0ðqsÞ þ ŷ2 � x̂2

s2 J2ðqsÞ
� �

t1ppðq; z; z0Þdqþ
Z 1

0
J0ðqsÞr1ppðq; z; z0Þdq; ð5Þ

G2W
zz ¼

Z 1

0
J0ðqsÞt1nnðq; z; z0Þdq; ð6Þ
Schematic representation of a drop with radius R and vicosity l1 in a matrix fluid with viscosity l0 located between two parallel plates with a
e between the plates of 2W . The interface is given by S and has an interfacial tension r.
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G2W
xy ¼

x̂ŷ
s2

Z 1

0
J2ðqsÞt1ppðq; z; z0Þdq; ð7Þ

G2W
xz ¼ �

x̂
s

Z 1

0
J1ðqsÞt1pnðq; z; z0Þdq; ð8Þ

G2W
zx ¼ �

x̂
s

Z 1

0
J1 qsð Þt1np q; z; z0ð Þdq; ð9Þ
with s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ ŷ2

p
, x̂ ¼ x� x0, ŷ ¼ y� y0, and Jm is a Bessel function of the first kind with order m. The integrands t1nn; . . . ; r1pp

can be found in Appendix A. The component G2W
yy is the same as G2W

xx , with the change x̂! ŷ, ŷ! �x̂, G2W
yz is the same as G2W

xz

with the factor x̂ replaced by ŷ; the same change goes for G2W
zx , and G2W

yx ¼ G2W
xy .

The double-layer potential T is defined as [38]
Tijk ¼ �dikQ jðx; x0Þ þ
oGij

oxk
ðx; x0Þ þ

oGkj

oxi
ðx; x0Þ; ð10Þ
where Q ðx;x0Þ is the pressure vector associated with the Green’s function G. Similar as for the Green’s functions for the
velocity and stress, the pressure vector can also be decomposed in a free-space result and a wall contribution, where the
components are given by [38,35,39]
Q1ðx;x0Þ ¼ 2
x̂

jx̂j3
; ð11Þ

Q 2W
x ðW;x;x0Þ ¼ 2

x̂
s

Z 1

0
qJ1ðqsÞp1p dq; ð12Þ

Q 2W
z ðW;x;x0Þ ¼ 2

Z 1

0
qJ0ðqsÞp1n dq; ð13Þ
and Q 2W
y is the same as Q2W

x with x̂ replaced by ŷ. The integrands p1p and p1n are listed in Appendix A.
To properly evaluate T2W , the partial derivatives of G2W to x need to be determined as well. Here, we split them in two

different categories: derivatives with respect to z, and those to x and y. The derivatives with respect to z are quite simple:
in the terms t1nn; . . . ; r1pp (Appendix A), we make the following changes:

w coshðwÞ ! q½coshðwÞ þw sinhðwÞ�,
w sinhðwÞ ! q½sinhðwÞ þw coshðwÞ�,
coshðwÞ ! q sinhðwÞ,
sinhðwÞ ! q coshðwÞ.

The derivatives with respect to x and y require proper differentiation of the Bessel functions:
oJmðqsÞ
ox

¼ os
ox

oJmðqsÞ
os

; ð14Þ
where we used the following formulations for the derivatives of the Bessel functions [40]:
oJ0ðqsÞ
os

¼ �qJ1ðqsÞ; oJ1ðqsÞ
os

¼ 1
2

qðJ0ðqsÞ � J2ðqsÞÞ; oJ2ðqsÞ
os

¼ qJ1ðqsÞ � 2
s

J2ðqsÞ: ð15Þ
The eventual expression for a derivative to x or y can be quite long, so here only one result is shown, all the others can be
found in Appendix C. The derivative of G2W

xz to x is
fG2W
xz g

ðxÞ ¼ � x̂
s

� �ðxÞ Z 1

0
J1ðqsÞt1pn dq� x

s
fsgðxÞ 1

2

Z 1

0
qðJ0ðqsÞ � J2ðqsÞÞt1pn dq; ð16Þ
where fgðxÞ is the derivative of that term to x.

3. Numerical implementation and validation

The numerical evaluation of the individual terms of the double-layer potential is similar to those of the single-layer po-
tential [22,33]: each integral is split in a part that is handled numerically and one that is handled analytically:
Z 1

0
J0ðqsÞt1nn dq ¼

Z n

0
J0ðt1nn � �t1nnÞdqþ

Z 1

0
J0ðqsÞ�t1nn dq; ð17Þ
where �t1nn is an approximation of t1nn at high q (see Appendix B for all terms). The second integral of the right-hand side of
Eq. (17) can be evaluated analytically. We have made a small modification in �t compared to [33]: the new terms also include
the parts with expð�2qWÞ of Aþ; . . . ;D�. The advantage of this is that in this formulation t � �t is the same as t with E� re-
placed by E� � 4 expð�2qWÞ. This works for all terms except t1pp and tðzÞ1pp, but this can be solved by adding two additional
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terms (see the end of Appendix B). The integration can be performed much faster this way, as �t does not have to be evaluated
anymore. The rate of decay of t � �t is now predominately given by qW expð�2qWÞ, which decays fast, so performing the
numerical integration only from 0 to n is sufficiently accurate, where here we have cut off the integration at n ¼ 7. An addi-
tional modification to [33], is that a Gaussian integration scheme is used, where only 30 integration points are required, in-
stead of 80–120 points used in a Simpson integration scheme to reach the same level of accuracy. The split of the integration
domain is also no longer used, as the current integration scheme was found to be accurate enough.

The derivation and implementation are validated by placing the field point on the wall, and the source point at various
locations. In this situation, as the velocity is 0 at the wall, T2W ¼ �T1. Convergence with the number of Gauss points and
increasing s is shown in Fig. 2. The error decreases rapidly, but increases for larger s. Hence, 30 Gauss points clearly provide
accurate results for all situations considered. However, for even larger values of s, this might not be sufficient.

However, large values of s can be tackled in another way. To limit the number of Fourier–Bessel integrals that have to be
evaluated, we use an asymptotic expression for the Green’s functions at high s. At high s, G is given by [34,41]
G ¼ 3
2s4W3 ðW

2 � z2ÞðW2 � z2
0Þ

x̂2 � ŷ2 2x̂ŷ 0
2x̂ŷ ŷ2 � x̂2 0

0 0 0

0
B@

1
CAþ Oðe�s=2WÞ: ð18Þ
Similarly, the pressure at high s is
Q ¼ 3
s2W3 ðW

2 � z2
0Þðx̂; ŷ;0Þ þ Oðe�s=2W Þ: ð19Þ
So if s is sufficiently large compared to the wall spacing, the asymptotic formulation can be used. We have chosen the cut-off
point at 2.5 wall spacings, or 5W . Using Eq. (10), the asymptotic expression of T can be found as well.

Further reduction of the computation time can be achieved by replacing the 2-wall kernel by the summation of the two
single-wall kernels, as done by Griggs et al. [26], and possible an additional Taylor expansion for the missing 2-wall part.
These authors reported only small differences (�1%) between two single-wall kernels, and the full Green’s function. This
has the advantage that no expensive Fourier–Bessel integrals have to be evaluated. This approximation worked well in that
case of pressure-driven flow with modest capillary numbers, and indeed, we found similar results (see Section 4.2), but we
found serious discrepancies for shear driven flows. In Fig. 3 the additional deformation due to the walls is plotted, for two
different ways of handling the 2-wall contribution to the kernels: our current method with the exact Fourier–Bessel inte-
grals, and the summation of two single-wall kernels, given by [42]. With increasing the confinement ratio, the match be-
comes worse, ultimately leading to break-up for the 2-wall kernel computation, where stable shapes are found for the
Fourier–Bessel method. Adding the Taylor expansion, derived by [26], might reduce this error, but we choose not to pursue
in that direction, as the current results are accurate enough, and the computational resources required are modest.

The total computation time in evaluating T2W is not much larger compared with G2W . This is mainly due to the fact that
the most expensive computation is that of t1nn; . . . ; r1pp, which has to be done anyhow for G2W . The terms tz

1nn; . . . ; rz
1pp and p1n

and p1p can be computed quite easily, since the terms independent of w have been evaluated once already.
The other numerical details of our implementation do not differ from previous work [33,43]. A non-singular contour inte-

gration is used for the free-space kernels. This split might give problems with the asymptotic formulation we use for the far-
field, as they are for full Green’s function. As we split the Green’s functions in a free-space and a wall contribution part, the
free-space Green’s function has to be subtracted from the asymptotic one in our implementation. This leads to small numer-
ical errors, where the free-space part is subtracted in a surface integration formulation, and added later in a contour-inte-
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superposition of the upper and the lower wall kernel led to break-up for higher confinement ratios.

Table 1
Convergence of the major drop axis L with Ca ¼ 0:2, R=W ¼ 0:8 and k ¼ 0:1

# nodes

642 1002 1442 1962 2562 3242 4002

Maximum of L 2.7739 2.7545 2.7445 2.7386 2.7349 2.7323 2.7306
Stable value of L 2.7255 2.7091 2.7030 2.6991 2.6963 2.6942 2.6928
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gration representation. The errors are relatively small in our case for studying the transient motion of drops, but could be
significant when investigating the far-field velocity field in detail for example, where resulting velocities are small.

Time integration is conducted with a multi-time-step scheme, where the kernels are only evaluated every 50 time steps.
A typical time step used was 5 � 10�4 to 1 � 10�3, depending mainly on the capillary number. Furthermore, the curvature
and normal vector were evaluated via contour-integration [44]. The iterative procedure to solve for u in Eq. (2) is done via
simple successive substitution. Except for the initial time step, all steps require no more then 3 iterations, so we found no
need to use more advanced solving procedures, as for example a bi-conjugate gradient method [45]. Each time step, the uni-
form drop expansion is removed from the solution spectrum. Finally, the mesh is updated with the normal component of the
interfacial velocity in addition to an extra tangential velocity that moves nodes to places with high curvature [44]. As defor-
mations were limited, no remesh algorithm [27,28] was used, except for studying the break-up modes.

Finally, we show consistency with the number of nodes N. For this case we consider the deformation of a drop in shear
flow, with Ca ¼ 0:2, R=W ¼ 0:8 and k ¼ 0:1, for which we focus on the major axis L, defined as the largest distance between
two nodes. Besides L, we also define B as twice the minimum distance from the mass center of the drop to the interface, and
LW as maximum size in the xy-plane. In Table 1, L is shown with the stationary value and the highest transient value for a
varying number of nodes. It is clear that we reach a converged result. As a boundary-integral method is only first-order accu-
rate in N, the convergence is slow, but sufficient for the accuracy we are aiming for. In the following simulations, 4002 nodes
were used.

4. Results

In this section, our method is applied to study the deformation of a drop in shear and Poiseuille flow between two parallel
walls. In particular the influence of the viscosity ratio is investigated. First we compare our results with a small-deformation
theory, then we compare results published for a pressure-driven problem, and then we investigate the influence of the vis-
cosity ratio on the deformation of the drops for modest capillary numbers. Finally, we show break-up for a high-viscosity
drop in shear flow.

4.1. Comparison with small-deformation theory

Similar as has been done in previous experimental [10] and numerical [33] work, we compare our results with the small-
deformation theory of Shapira and Haber [46], which describes the enhanced deformation of the drop, expressed in the Tay-
lor deformation parameter D ¼ ðL� BÞ=ðLþ BÞ, as
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D2W ¼ Ca
R

2W

� �3 1þ 2:5k
1þ k

16þ 19k
8ð1þ kÞ sinð/Þ cosð/ÞCs; ð20Þ
where / is the angle the major drop axes makes with the x-axis, and Cs a parameter dependent on the location of the drop
in the channel, which is 5.699 for our case, where the drop is placed exactly in the center. We have investigated four dif-
ferent viscosity ratios: k ¼ 0:1; 0:3;3 and 10. To evaluate D2W , the deformation in the absence of the walls is simply sub-
tracted from the total deformation in the presence of the walls. The results for these simulations can be seen in Fig. 4a-d,
where the deformation for two low capillary numbers, Ca ¼ 0:05 and 0.1, is shown. For all viscosity ratios we obtain excel-
lent correspondence, especially for the low confinement ratios. At higher confinement ratio we see a deviation, where we
find a larger deformation than the prediction of the small-deformation theory. Similar results were are also found for the
case with k ¼ 1 [33]. Here, drop shapes significantly deviate from an ellipsoidal shape, which is inconsistent with the
small-deformation theory, that states that drops remain ellipsoidal, regardless of the confinement ratio. Furthermore,
the deviation in the absolute value for the k ¼ 10 case is also relatively large. No immediate cause for this deviation is
identified, although we find that the calculated orientation angle of the drop is quite low for these cases. Changing the
orientation angle with only a couple of degrees is sufficient to get an excellent match here. As the rotation angle is calcu-
lated from the maximum node-to-node distance on the interface, and the fact that the location of the nodes is discrete,
errors are expected. Modifying the Shapira–Haber model, to remove the influence of the rotation angle, might also provide
a better fit [12].
4.2. Drop deformation and migration in Poiseuille flow

As a second validation of our model, we compare our data with those of pressure-driven flow of off-center placed drop,
reported by [26]. The major drop axis, the migration velocity and the distance of the mass center of the drop to the channel
center are monitored in time. Our results are given in Fig. 5, and can be directly compared with Fig. 7 in [26]. A good match is
found, and no further discussion of the results is done, as that is conducted in the before-mentioned work.
10-1 100

10-4

10-3

10-2

10-1

R/W

D
2W

Current simulation: Ca = 0.05
Current simulation: Ca = 0.1
ShapiraHaber model

10-1 100

10-4

10-3

10-2

10-1

R/W

D
2W

Current simulation: Ca = 0.05
Current simulation: Ca = 0.1
ShapiraHaber model

10-1 100

10-4

10-3

10-2

10-1

100

R/W

D
2W

Current simulation: Ca = 0.05
Current simulation: Ca = 0.1
ShapiraHaber model

10-1 100

10-4

10-3

10-2

10-1

100

R/W

D
2W

Current simulation: Ca = 0.05
Current simulation: Ca = 0.1
ShapiraHaber model

a b

c d

Fig. 4. Comparison of our simulations with the small-deformation theory of [46]: (a) k ¼ 0:1, (b) k ¼ 0:3, (c) k ¼ 3 and (d) k ¼ 10.
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4.3. Drop deformation at modest capillary numbers

Next, we consider more profound deformation of drops in shear flow by investigating the deformation with a moderate
capillary number. All simulations were started with an initially spherical drop placed in the center of the channel. Simula-
tions were conducted until a steady state was reached. In Fig. 6, the evolution of the major drop axes in time are shown for
Ca ¼ 0:3, k ¼ 0:1 with confinement ratios ranging from 0 to 0.9. The stable drops shapes for R=W ¼ 0 and 0.9 can be found in
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Fig. 8a and b. The results obtained are similar as those for a viscosity ratio of unity: the deformation increases with increasing
confinement ratio. Furthermore, an overshoot in L is seen for the higher confinement ratios, as well as a decrease in the ori-
entation angle, as the drop orients itself more in the flow direction.

The results for k ¼ 10 (Figs. 7, 8c and d), however, are different. In this case, the unconfined drop shows an overshoot and
damped oscillatory behavior, similar as for highly confined drops for viscosity ratios of k ¼ 1 and below. But with increasing
the confinement ratio, the overshoot disappears for drops with k ¼ 10, although the total deformation is larger. We also see
that the orientation angle for the confined drops is higher than for the unconfined. In other words, the walls prevent the drop
from aligning itself in the flow direction, or, in the case of high capillary numbers, prevent the drop from tumbling.

4.4. Drop break-up

Finally, we show break up of drops in two situations. In Fig. 9a, some shapes at various instances for a drop with a vis-
cosity ratio of k ¼ 10, Ca ¼ 0:6 and R=W ¼ 0:75 are shown. The remarkable thing is that the drop breaks up. For unconfined
drops with a high-viscosity ratio, the rotational component of the shear flow is stronger than the elongational rate [47], lead-
0 10 20 30 40 50 60 70
1

1.5

2

2.5

3

3.5

4

Time

D
ro

p 
Ax

es

R/W = 0
R/W = 0.1
R/W = 0.25
R/W = 0.5
R/W = 0.67
R/W = 0.75
R/W = 0.83
R/W = 0.9
L
LW
B

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

Time

R
ot

at
io

n 
an

gl
e

R/W = 0
R/W = 0.1
R/W = 0.25
R/W = 0.5
R/W = 0.67
R/W = 0.75
R/W = 0.83
R/W = 0.9

a b

Fig. 7. (a) The major drop axes in time and (b) the rotation angle in time, with Ca ¼ 0:3, k ¼ 10 and various confinement ratios.

Fig. 8. (a) The steady drop shapes for Ca ¼ 0:3, and (a) k ¼ 0:1, R=W ¼ 0; (b) k ¼ 0:1, R=W ¼ 0:9; (c) k ¼ 10, R=W ¼ 0 and (d) k ¼ 10, R=W ¼ 0:9.



Fig. 9. Breakup modes for confined drops: (a) Ca ¼ 0:6, k ¼ 10, R=W ¼ 0:75; (b) Ca ¼ 0:54, k ¼ 0:3, R=W ¼ 0:6.
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ing to a critical viscosity ratio, above which the drop cannot break up, but keeps tumbling in the flow [48]. In our confined
case, the walls prevent the tumbling, and keep the drop more aligned in the direction of the straining component of the shear
flow. This eventually leads to break up, if the capillary number is high enough. Bentley and Leal [49] showed experimentally
in a four-roll mill, that reducing the rotational component in a flow, (going from shear to elongational flow) decreases the
critical capillary number for all viscosity ratios. As for the low-viscosity drop, shown in Fig. 9b with k ¼ 0:3, Ca ¼ 0:54 and
R=W ¼ 0:6, the break-up mode is similar as reported for drops with matching viscosities [33]: the drop is initially signifi-
cantly stretched, after which it retracts and breaks up into 3 or more smaller drops. Experimentally it was observed, that
drops with a high-viscosity ratio indeed break up faster in a confined situations than drops in bulk flows; lower viscous
drops, on the other hand, were found to have a higher critical capillary number for higher confinement ratios [13]. Indeed,
in our case the capillary number for the case shown here, which is slightly above the critical capillary number (for situations
starting with a spherical drop) we found ðCa ¼ 0:53Þ, is higher than the critical capillary number in the unconfined case
(�0.43 for k ¼ 0:3). A simple explanation for this second observation could be given by the observation that the drops in con-
fined situations align themselves more in the flow direction (lower rotation angle), and hence experience a weaker straining
flow. Based on this, one would expect that the drops themselves are also shorter, but as can be seen in Fig. 6a, that is not the
case.

5. Conclusions

In this work, a boundary-integral method is presented for drop deformation between parallel plates which can handle
non-unit viscosity ratio systems. For this, the Green’s functions are modified to obey the no-slip condition at the walls.
The formulation for the double-layer potential involves partial derivatives of the single-layer potential. These terms are
written down, as well as an efficient numerical scheme to evaluate them is discussed. The method is then applied to
study the behavior of drops in shear flow between two parallel walls, where the drop has a different viscosity than
the matrix fluid. For low capillary numbers we find an excellent match with a small-deformation theory, although there
are some deviations at the highest confinement ratios. When investigating moderate capillary numbers, we found that
low-viscosity drops behave similar as drops with a viscosity ratio of unity, i.e. enhanced deformation and damped
oscillatory behavior at larger confinement ratios. The behavior of high-viscosity drops shows that increasing the confine-
ment ratio hinder rotation of drops, keeping them more aligned with the strain direction, which leads to a larger defor-
mation, but less overshoot in the drop axes. High-viscosity drops can be broken in shear flow this way, while
low-viscosity drops show break-up behavior similar to drops with matching viscosity, although we find a higher critical
capillary number.
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Appendix A. Green’s functions for parallel walls

The Green’s function applied for a point force in a fluid between two parallel walls were derived by [35]. The expressions
are all integrals over q with Bessel function weights. The integrands are defined as follows:
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t1nnðq; z; z0Þ ¼ E�½�v coshðvÞ þ Bþ sinhðvÞ�w coshðwÞ þ Eþ½�v sinhðvÞ þ Aþ coshðvÞ�w sinhðwÞ þ Eþ½Aþv sinhðvÞ
� Cþ coshðvÞ� coshðwÞ þ E�½Bþv coshðvÞ � Dþ sinhðvÞ� sinhðwÞ; ðA:1Þ

t1npðq; z; z0Þ ¼ E�½v sinhðvÞ � A� coshðvÞ�w coshðwÞ þ Eþ½v coshðvÞ � B� sinhðvÞ�w sinhðwÞ þ Eþ½�Aþv coshðvÞ
þ u2 sinhðvÞ� coshðwÞ þ E�½�Bþv sinhðvÞ þ u2 coshðvÞ� sinhðwÞ; ðA:2Þ

t1pnðq; z; z0Þ ¼ Eþ½�v sinhðvÞ þ Aþ coshðvÞ�w coshðwÞ þ E�½�v coshðvÞ þ Bþ sinhðvÞ�w sinhðwÞ þ E�½A�v coshðvÞ
� u2 sinhðvÞ� coshðwÞ þ Eþ½B�v sinhðvÞ � u2 coshðvÞ� sinhðwÞ; ðA:3Þ

t1ppðq;z;z0Þ¼ Eþ½vcoshðvÞ�B� sinhðvÞ�wcoshðwÞþE�½vsinhðvÞ�A� coshðvÞ�wsinhðwÞþE�½�A�vsinhðvÞþC� coshðvÞ
�2utanhðuÞcoshðvÞ�coshðwÞþEþ½�B�vcoshðvÞþD� sinhðvÞ�2ucothðuÞsinhðvÞ�sinhðwÞ; ðA:4Þ

r1ppðq; z; z0Þ ¼ ½�2e�u coshðvÞ= coshðuÞ� coshðwÞ þ ½�2e�u sinhðvÞ= sinhðuÞ� sinhðwÞ; ðA:5Þ
where
u ¼ qW ; v ¼ qz0; w ¼ qz ðA:6Þ
A�ðuÞ ¼ u� sinhðuÞe�u ¼ u� 0:5ð1� e�2uÞ; ðA:7Þ
B�ðuÞ ¼ u� coshðuÞe�u ¼ u� 0:5ð1þ e�2uÞ; ðA:8Þ
C�ðuÞ ¼ uð1þ uÞ � sinhðuÞe�u ¼ uð1þ uÞ � 0:5ð1� e�2uÞ; ðA:9Þ
D�ðuÞ ¼ uð1þ uÞ � coshðuÞe�u ¼ uð1þ uÞ � 0:5ð1þ e�2uÞ; ðA:10Þ

E�ðuÞ ¼
1

sinhðuÞ coshðuÞ � u
: ðA:11Þ
The integrands for the pressure vector are
p1pðx; x0Þ ¼ E�½A� coshðvÞ � v sinhðvÞ� coshðwÞ þ Eþ½B� sinhðvÞ � v coshðvÞ� sinhðwÞ; ðA:12Þ
p1nðx; x0Þ ¼ E�½Bþ sinhðvÞ � v coshðvÞ� coshðwÞ þ Eþ½Aþ coshðvÞ � v sinhðvÞ� sinhðwÞ: ðA:13Þ
For the evaluation of the pressure in the domain, where the pole and the field point have to be switched, they are given by
p1pðx0;xÞ ¼ E�A� coshðvÞ coshðwÞ þ EþB� sinhðvÞ sinhðwÞ � E� coshðvÞw sinhðwÞ � Eþ sinhðvÞw coshðwÞ; ðA:14Þ
p1nðx0;xÞ ¼ EþAþ sinhðvÞ coshðvÞ þ E�Bþ coshðvÞ sinhðvÞ � Eþ sinhðvÞw sinhðvÞ � E� coshðvÞw coshðwÞ: ðA:15Þ
To recover the free-space Green’s function and pressure vector, the integrands are
t0nn ¼ t0pp ¼ ð1þ qjz� z0jÞ expð�qjz� z0jÞ; ðA:16Þ
t0np ¼ t0pn ¼ �qðz� z0Þ expð�qjz� z0jÞ; ðA:17Þ
r0pp ¼ 2 expð�qjz� z0jÞ; ðA:18Þ
p0pðz; z0Þ ¼ expð�qjz� z0jÞ; ðA:19Þ
p0nðz; z0Þ ¼ ð�1þ 2Hðz� z0ÞÞ expð�qjz� z0jÞ; ðA:20Þ
with H the Heaviside function.

Appendix B. High q approximations

In Section 2 the high q approximations for t, indicated as �t, are given by
�t1nn ¼ ½f�2ðW � zÞðW � z0Þgq2 þ f�2W þ zþ z0gq� 1� expð½zþ z0 � 2W�qÞ þ ½f�2ðW þ zÞðW þ z0Þgq2

þ f�2W � z� z0gq� 1� expð½�z� z0 � 2W�qÞ þ ½fz� z0gqþ 1� expð½�zþ z0 � 4W�qÞ
þ ½f�zþ z0gqþ 1� expð½z� z0 � 4W�qÞ; ðB:1Þ

�t1np ¼ ½f2ðW � zÞðW � z0Þgq2 þ fz� z0gq� expð½zþ z0 � 2W�qÞ þ ½f�2ðW þ zÞðW þ z0Þgq2

þ fz� z0gq� expð½�z� z0 � 2W�qÞ þ ½f�zþ z0gq� expð½�zþ z0 � 4W�qÞ þ ½f�zþ z0gq� expð½z� z0 � 4W�qÞ;
ðB:2Þ
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�t1pn ¼ ½f�2ðW � zÞðW � z0Þgq2 þ fz� z0gq� expð½zþ z0 � 2W�qÞ þ ½f2ðW þ zÞðW þ z0Þgq2

þ fz� z0gq� expð½�z� z0 � 2W�qÞ þ ½f�zþ z0gq� expð½�zþ z0 � 4W�qÞ þ ½f�zþ z0gq� expð½z� z0 � 4W�qÞ;
ðB:3Þ

�t1pp ¼ ½f2ðW � zÞðW � z0Þgq2 þ f�2W þ zþ z0gq� 1� expð½zþ z0 � 2W�qÞ þ ½f2ðW þ zÞðW þ z0Þgq2

þ f�2W � z� z0gq� 1� expð½�z� z0 � 2W�qÞ þ ½fz� z0gqþ 1� expð½�zþ z0 � 4W�qÞ
þ ½f�zþ z0gqþ 1� expð½z� z0 � 4W�qÞ; ðB:4Þ

�r1pp ¼ �2 expð½zþ z0 � 2W�qÞ � 2 expð½�z� z0 � 2W�qÞ: ðB:5Þ

�tðzÞ1nn ¼ ½f�2ðW � zÞðW � z0Þgq3 þ fz� z0gq2� expð½zþ z0 � 2W�qÞ þ ½f2ðW þ zÞðW þ z0Þgq3 þ fz� z0gq2�
� expð½�z� z0 � 2W�qÞ þ ½f�zþ z0gq2� expð½�zþ z0 � 4W�qÞ þ ½f�zþ z0gq2� expð½z� z0 � 4W�qÞ; ðB:6Þ

�tðzÞ1np ¼ ½f2ðW � zÞðW � z0Þgq3 þ f�2W þ zþ z0gq2 þ q� expð½zþ z0 � 2W�qÞ þ ½f2ðW þ zÞðW þ z0Þgq3

þ f�2W � z� z0gq2 þ q� expð½�z� z0 � 2W�qÞ þ ½fz� z0gq2 þ q� expð½�zþ z0 � 4W�qÞ
þ ½f�zþ z0gq2 þ q� expð½z� z0 � 4W�qÞ; ðB:7Þ

�tðzÞ1pn ¼ ½f�2ðW � zÞðW � z0Þgq3 þ f2W þ z� 3z0gq2 þ q� expð½zþ z0 � 2W�qÞ þ ½f�2ðW þ zÞðW þ z0Þgq3

þ f2W � zþ 3z0gq2 þ q� expð½�z� z0 � 2W�qÞ þ ½fz� z0gq2 þ q� expð½�zþ z0 � 4W�qÞ
þ ½f�zþ z0gq2 þ q� expð½z� z0 � 4W�qÞ; ðB:8Þ

�tðzÞ1pp ¼ ½f2ðW � zÞðW � z0Þgq3 þ f�4W þ zþ 3z0gq2� expð½zþ z0 � 2W�qÞ þ ½f�2ðW þ zÞðW þ z0Þgq3

þ f4W þ zþ 3z0gq2� expð½�z� z0 � 2W�qÞ þ ½f�zþ z0gq2� expð½�zþ z0 � 4W�qÞ
þ ½f�zþ z0gq2� expð½z� z0 � 4W�qÞ; ðB:9Þ

�rðzÞ1pp ¼ �2q expð½zþ z0 � 2W�qÞ þ 2q expð½�z� z0 � 2W�qÞ: ðB:10Þ
The fast decaying terms for the pressure vector are
�p1pðx; x0Þ ¼ ½f2ðW � z0Þgq� 1� expð½zþ z0 � 2W�qÞ þ ½f2ðW þ z0Þgq� 1� expð½�z� z0 � 2W�qÞ þ expð½�zþ z0 � 4W�qÞ
þ expð½z� z0 � 4W�qÞ; ðB:11Þ

�p1nðx; x0Þ ¼ ½f2ðW � z0Þgqþ 1� expð½zþ z0 � 2W�qÞ � ½f2ðW þ z0Þgqþ 1� expð½�z� z0 � 2W�qÞ þ expð½�zþ z0 � 4W�qÞ
� expð½z� z0 � 4W�qÞ; ðB:12Þ

�p1pðx0;xÞ ¼ ½f2ðW � zÞgq� 1� expð½zþ z0 � 2W�qÞ þ ½f2ðW þ zÞgq� 1� expð½�z� z0 � 2W�qÞ þ expð½�zþ z0 � 4W�qÞ
þ expð½z� z0 � 4W�qÞ; ðB:13Þ

�p1nðx0;xÞ ¼ ½f2ðW � zÞgqþ 1� expð½zþ z0 � 2W�qÞ � ½f2ðW þ zÞgqþ 1� expð½�z� z0 � 2W�qÞ þ expð½z� z0 � 4W�qÞ
� expð½�zþ z0 � 4W�qÞ; ðB:14Þ

�pðzÞ1pðx0;xÞ ¼ ½f2ðW � zÞgq2 � 3q� expð½zþ z0 � 2W�qÞ � ½f2ðW þ zÞgq2 � 3q� expð½�z� z0 � 2W�qÞ
þ q expð½�zþ z0 � 4W�qÞ þ q expð½z� z0 � 4W�qÞ; ðB:15Þ

�pðzÞ1nðx0;xÞ ¼ ½f2ðW � zÞgq2 � q� expð½zþ z0 � 2W �qÞ þ ½f2ðW þ zÞgq2 � q� expð½�z� z0 � 2W �qÞ
þ q expð½zþ z0 � 4W�qÞ þ q expð½�z� z0 � 4W�qÞ; ðB:16Þ
With these definitions of �t, t � �t is the same as replacing E� in t with E� � 4 expð�2uÞ. However, this does not work for t1pp

and tðzÞ1pp due to the hyperbolic tangent and cotangent terms. Therefore, we make an addition to t1pp and define it as
t1ppðq; z; z0Þ ¼ Eþ½v coshðvÞ � B� sinhðvÞ�w coshðwÞ þ E�½v sinhðvÞ � A� coshðvÞ�w sinhðwÞ þ E�½�A�v sinhðvÞ
þ C� coshðvÞ � 2u tanhðuÞ coshðvÞ� coshðwÞ þ Eþ½�B�v coshðvÞ þ D� sinhðvÞ � 2u cothðuÞ
� sinhðvÞ� sinhðwÞ þ 8u½1� tanhðuÞ� expð�2uÞ coshðvÞ coshðwÞ þ 8u½1� cothðuÞ� expð�2uÞ
� sinhðvÞ sinhðwÞ: ðB:17Þ
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With this modification, the substitution of E� gives t1pp � �t1pp. The same applies to tðzÞ1pp, where the terms coshðwÞ and sinhðwÞ
in the addition need to be replaced by q sinhðwÞ and q coshðwÞ respectively.

Appendix C. Derivatives of Green’s function

The derivatives of G2W to x, indicated with fG2WgðxÞ, are given by
fG2W
xx g

ðxÞ ¼ 1
2
fsgðxÞ

Z 1

0
qJ1ðqsÞt1pp dq� 1

2
ŷ2 � x̂2

s2

� �ðxÞ Z 1

0
J2ðqsÞt1pp dq

� 1
2

ŷ2 � x̂2

s2 fsgðxÞ
Z 1

0
ðqJ1ðqsÞ � 2

s
J2ðqsÞÞt1pp dq� fsgðxÞ

Z 1

0
qJ1ðqsÞr1pp dq; ðC:1Þ

fG2W
zz g

ðxÞ ¼ �fsgðxÞ
Z 1

0
qJ1ðqsÞt1nn dq; ðC:2Þ

fG2W
xy g

ðxÞ ¼ x̂ŷ
s2

� �ðxÞ Z 1

0
J2ðqsÞt1pp dqþ x̂ŷ

s2 fsg
ðxÞ
Z 1

0
ðqJ1ðqsÞ � 2

s
J2ðqsÞÞt1pp dq; ðC:3Þ

fG2W
xz g

ðxÞ ¼ � x̂
s

� �ðxÞ Z 1

0
J1ðqsÞt1pn dq� x̂

s
fsgðxÞ 1

2

Z 1

0
qðJ0ðqsÞ � J2ðqsÞÞt1pn dq; ðC:4Þ

fG2W
zx g

ðxÞ ¼ � x̂
s

� �ðxÞ Z 1

0
J1ðqsÞt1np dq� x̂

s
fsgðxÞ 1

2

Z 1

0
qðJ0ðqsÞ � J2ðqsÞÞt1np dq: ðC:5Þ
The expression for fG2W
xx g

ðxÞ is the same as fG2W
xx g

ðxÞ with ŷ2�x̂2

s2 replaced by x̂2�ŷ2

s2 , fG2W
yz g

ðxÞ is the same as fG2W
xz g

ðxÞ with x̂
s !

ŷ
s (the

same change goes for fG2W
zy g

ðxÞ), and fG2W
yx g

ðxÞ ¼ fG2W
xy g

ðxÞ. For the derivatives to y, all terms fgðxÞ are replaced by fgðyÞ, with
fsgðxÞ ¼ x̂
s
; fsgðyÞ ¼ ŷ

s
;

x
s

n oðxÞ
¼ ŷ2

s3 ;
x
s

n oðyÞ
¼ y

s

n oðxÞ
¼ � x̂ŷ

s3 ;

y
s

n oðyÞ
¼ x̂2

s3 ;
x̂2 � ŷ2

s2

� �ðxÞ
¼ 4x̂ŷ2

s4 ;
x̂2 � ŷ2

s2

� �ðyÞ
¼ �4x̂2ŷ

s4 ;

ŷ2 � x̂2

s2

� �ðxÞ
¼ �4x̂ŷ2

s4 ;
ŷ2 � x̂2

s2

� �ðyÞ
¼ 4x̂2ŷ

s4 ;

x̂ŷ
s2

� �ðxÞ
¼ ŷðŷ2 � x̂2Þ

s4 ;
x̂ŷ
s2

� �ðyÞ
¼ x̂ðx̂2 � ŷ2Þ

s4 :

ðC:6Þ
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